

FACULTY OF ENGINEERING

Multi-agentbaserad simulering och utvärdering av stationärt snabbladdningsbehov för en helelektrisk tung lastbilsflotta

Mattias Ingelström, Hamoun Pourroshanfekr Arabani, Mats Alaküla, Francisco J. Márquez-Fernández Division of Industrial Electrical Engineering and Automation

FACULTY OI

ENGINEERING

Hur påverkar snabbladdningsstationers täthet elektrifiering av tunga lastbilar i Sverige?

Mattias Ingelström, Francisco J. Márquez-Fernández Division of Industrial Electrical Engineering and Automation

- Who am I?
- Model development
 - Background
 - MATSim
 - Methodology
 - Example results
- Case study: Distance intervals
 - Background
 - Description
 - Results
 - Conclusions
- Future work

1/24

Who am I?

Mattias Ingelström

Doctoral student at Industrial Electrical Engineering and Automation (IEA), LTH, Lund University email: mattias.ingelstrom@iea.lth.se

Supervisors: Prof. Mats Alaküla, Fran Marquez Started April 2022

Previous experience

- M.Sc.Eng in Mechanical Engineering at LTH, Lund University, 2014-2019
 - Master thesis connected to optimisation of power plants at Siemens Turbomachinery (now Siemens Energy)
- Scania Engineering Program Autumn 2019 Summer 2020
- Development/simulation engineer at Scania 2020-2022
 - Pre-development alternative fuel solutions

Background

MATSim

Background

Background

Background

Research questions

> What infrastructural decisions are required to facilitate a full-electric long-haulage truck fleet?

Primary

- Where to place charging stations?
- What installed capacity is required at each charging station?

Secondary (examples)

- Is it possible to maintain today's logistic flows?
- How will power grid be affected?
- How will policies affect?
- What will happen a snowy day in northern Sweden?
- How will battery aging affect?
- ...

ATSIM **Multi-Agent Transport Simulation**

- Microscopic simulation
- Extendable (e.g., EVs) \bullet
- Co-evolutionary egoistic "agents" competing with others
- Mainly developed at TU Berlin \bullet

Project github.com/matsim-org

Info matsim.org

Public tutorial <u>https://isis.tu-berlin.de/course/view.php?id=31123</u>

Mattias Ingelström |

MATSim

Methodology - Inputs

Truck weight class	Battery capacity [kWh]
102 🜉	180
103 🔜	300
104	400
105	500

Mattias Ingelström

VTI Transportforum 17 Jan 2024

Methodology

MATSim

Methodology - Inputs

Samgods annual road freight

OD matrix output

Mattias Ingelström

Background

MATSim

Methodology - Workflow

Figures made using tool Via from Simunto

Mattias Ingelström

VTI Transportforum 17 Jan 2024

UCN = Unmet Charging Need = Location of agent with a failed trip when it reached 20% State of Charge

MATSim

Methodology - Workflow

Charging station placement

- Count UCNs, rank zones and a)choose those with highest UCN intensity
- Find average position of UCN b)
- From the average position a \mathbf{C} charging station is placed at the closest link

Methodology - Workflow

Charging station assignment

- Done first iteration and then 20% of agents each iteration
- Agents' vehicles' start with pre-defined initial SoC
- Agents start to look for the nearest chargers at 15-40% SoC or 4.5hr driving and chooses the nearest station
- Maximum charging time 45 minutes and rated charging power is 1 MW

Methodology

Example results

10/24

Methodology - Workflow

- Charging demand based on OD and detailed energy consumption maps
- Start without any charging infrastructure and add charging stations until desirable electrification coverage has been met
- >Method suitable for primary research questions

MATSim

Example results

Mattias Ingelström

VTI Transportforum 17 Jan 2024

Methodology

Example results

FACULTY OF

Multi-agentbaserad simulering och utvärdering av stationärt snabbladdningsbehov för en helelektrisk tung lastbilsflotta

Mattias Ingelström, Hamoun Pourroshanfekr Arabani, Mats Alaküla, Francisco J. Márquez-Fernández Division of Industrial Electrical Engineering and Automation

FACULTY OF ENGINEERING

Hur påverkar snabbladdningsstationers täthet elektrifiering av tunga lastbilar i Sverige?

Mattias Ingelström, Francisco J. Márquez-Fernández Division of Industrial Electrical Engineering and Automation

#_ #2# Pr. + 7 }.

EU Regulation for alternative fuel infrastructure (AFIR) demands introduction of fast charging infrastructure along the TEN-T road network

- Every **60 km** along **core network**
- Every **100 km** along **comprehensive network**

How will set intervals between stations affect road freight electrification possibilities?

Conclusions

Future studies

Case setup

Results

Case setup

Rest of the scenarios are scaled based on the number of zones along the TEN-T

$d_{\rm max}$	Number of zones along TEN-T	Maximum installed charging power per zone [MW]
15	848	6
30	470	10
45	318	15
60	228	20
90	153	30
120	110	42
150	86	54

Results

- Tighter spacing favoured
- Places stations closer to the actual demand
- $d_{max} = 45$ km best scenario
 - Scenarios with shorter
 spacing lower maximum
 installed capacities
 increases risk of queues
 - Should be solved with
 higher number of
 iterations
- ALL scenarios stagnate
 - Demand *could* be outside of TEN-T

Mattias Ingelström \mid

Case study

Background

Results

Results

- Tighter spacing leads to faster drop in utilisation
- From Johannes Karlsson and Anders Grauers*, 30% is reasonable for a future full-electric scenario and stations would be profitable
- All scenarios show indication of distinct drop

* Karlsson, J., & Grauers, A. (2023). Agent-based investigation of charger queues and utilization of public chargers for electric longhaul trucks. Energies, 16 (12). Retrieved from https://www.mdpi.com/1996-1073/16/12/4704 doi: 10.3390/en16124704

Conclusions

Case setup

Results

Results

- CV = Coefficient of Variation (σ/μ)
- Average value close • to $d_c = demand$ uniform
- Shorter spacing leads to larger variation
 - stations placed closer to demand

Conclusion

- Detailed study of how distances (along TEN-T) between stations impact electrification rate and utilisation ratio
 - Evident that study requires further analysis
- All scenarios point to not all of TEN-T having to be covered - 60km along TEN-T might result in unprofitable stations
- Placing stations closer to demand will help maintain a high utilisation ratio
- Grid capacity data would greatly improve assumptions regarding maximum installed charging power per zone/station
 - Model is ready to incorporate grid capacity maps

22/24

Future studies & challenges

Specific to this study

- Compare study to an AFIR scenario
- 2. Extend analysis: locations of need for stations outside of TEN-T
- Run sensitivity analyses 3.

In general

- Study impact of departure times on power grid using OEM data
- Land-use considerations and relate scenarios to cost models
- Study resilience in the system 3.

Case setup

Results

Future work & challenges

VTI Transportforum 17 Jan 2024

Validity - through neighbouring project

Attractiveness of candidate locations

24/24

Thank you for listening! Questions?

Mattias Ingelström

VTI Transportforum 17 Jan 2024

mattias.ingelstrom@iea.lth.se

ITH

FACULTY OF ENGINEERING